

Site & Soil Assessment for On-site Effluent Disposal

Lot 4 DP271477 6 Belleview Drive Murrumbateman NSW 2582

October 2024

CONTENTS

Introduction	3
Site Characteristics	4
Site Evaluator	5
Site Assessment	6
Soil Assessment	7
System Selection	8
Management Prescriptions	9
Water Balance	11
Nutrient Balance	12
Appendix 1: Soil Survey Sheet	13
Appendix 2: NSW Accredited AWTS	14
Appendix 3: Important Reading	15

INTRODUCTION

Scope This report provides site and soil assessment for on-site effluent disposal at the applicant's proposed 7-bedroom dwelling and 3-bedroom granny flat. An Aerated Wastewater Treatment System (AWTS) is proposed

An AWTS coupled with surface or subsurface irrigation provides a suitable form of effluent treatment for the site and soil characteristics of the land in question.

The management recommendations include the size and location of the proposed irrigation area.

References

AS/NZS 1547:2012 *On-site domestic wastewater management On-site sewerage management for single households* (Anon, 1998) Hird, C. (1991). *Soil Landscapes of the Goulburn 1:250 000 Sheet*

SITE CHARACTERISTICS

The terrain of the site comprises a gently inclined mid slope of 3-4 degrees overlying Hawkins Volcanics. The slope across the proposed irrigation area has a linear planar configuration ensuring that runoff does not concentrate within the site. The soil at the site is an imperfectly drained Kurosol within the Binalong soil landscape. It comprises loam then sandy clay loam topsoil horizons to 20cm and 50cm respectively, overlying a medium clay subsoil horizon to 100cm+.

SITE EVALUATOR

Company Name ph: email: Date of assessment

Signature of evaluator

Land Capability Services Richard Miller 0417 694 638 rgmiller@me.com October 8, 2024

delle

SITE INFORMATION

Address

Council area Owner/developer Area: Site plan attached Photograph attached Intended water supply Expected wastewater quantity (litres/day)

Lot 4 DP271477, 6 Belleview Drive, Murrumbateman NSW 2582 Yass Valley Ahmed 5.6 ha Yes Yes Rainwater 1440 (7 bedroom dwelling + 3 bedroom flat potentially housing 12 occupants generating design flows of 120L/person/day = 1440 litres/day) Aerated wastewater treatment systems provide adequate treatment of effluent on appropriate soils.

Local experience

SITE ASSESSMENT

Climate	Warm to hot summers with a high evaporative deficit. Cool to
	cold winters with a small evaporative deficit

Land applic Wet weathe Flood potential: Land applic Land applic	e: ter balance calculated cation area calculated er storage area calculation attached cation area above 1 in 20 year flood le cation area above 1 in 100 year flood le	evel	Yes Yes NA Yes Yes Yes
used for do Groundwate Vulnerabilit	Imperfectly drained None in application area distance to groundwater well mestic water supply er vulnerability map referred to	>250m Yass LEP Sheet CL2 Not within vulnerabilit Stock & do	2_005 ty area
Buffer dista	ince from wastewater management sy	vstem to:	
Dams Drainage lin Boundary o Garage Swimming Dwellings Is there sufficient Application	of property pool land area for: system (including buffer distances) plication system (including buffer dis	NA >40m >6m >6m >6m >15m	Yes Yes None

SOIL ASSESSMENT

Depth to bedrock or hardpan Depth to soil water table	>100cm >100cm
Hydraulic loading rate Soil structure	Moderate to massively structured topsoil Moderately structured subsoil
Soil texture	Loam then sandy clay loam topsoil Medium clay subsoil
Permeability category	 (3) 1.5-3.0m/day in topsoil (6) <0.06m/day in subsoil
Hydraulic loading recommended for irrigation system	2.1mm/day irrigation
Coarse Fragments	20% to 10mm in topsoil 5% to 10mm subsoil
Bulk Density	Estimate 1.5 in topsoil Estimate 1.3 in subsoil
Ph (1:5 Water)	Topsoil 3.8 Subsoil 5.2
Electrical conductivity (dS/m)	Topsoil .07 Subsoil .04
Geology & soil landscape survey Presence of discontinuities Presence of fractured rock Soil landscape reference	None None Binalong
Dispersiveness	None in topsoil EAT 5(2) Present in remoulded subsoil EAT 3(2)

SYSTEM SELECTION

Consideration of connection to a centralised sewerage system						
Nearest feasible connection point	>5km					
Potential for future connection to centralised sewerage	None					
Potential for future connection to reticulated water	None					

Type of land application system best suited to site:

Surface or shallow subsurface irrigation

Reason Medium clay at 50cm precludes subsoil dispersal of effluent in trenches or beds.

Type of treatment system best suited to site and application system:

Aerated wastewater treatment system

Reason Superior standard of treatment for site and soil conditions.

GENERAL COMMENTS

Are there any specific environmental constraints?

Strongly acidic topsoils require amelioration with lime as per management prescriptions

Are there any specific health constraints?

None

MANAGEMENT PRESCRIPTIONS

Aerated wastewater treatment systems treat effluent to an improved, or secondary standard, reducing any impact on groundwater and making available water for landscaping and other purposes. The following prescriptions are site specific and must be strictly adhered to, in order to maximise water and nutrient uptake, and thus minimise runoff and seepage.

A list of NSW accredited AWTS's are included in Appendix 2 on Page 14, suitable for most residential situations up to 10 people or 1500L/day. However, in this instance the wastewater load from the two dwellings may be near capacity for these systems, and so consideration should be given to a light commercial AWTS for improved performance.

An irrigation area of 700 m² should be determined within the area shown as suitable in Figure 1.

The irrigation area should be sown to improved perennial pastures, which once established, should be regularly mown to improve rates of nitrogen uptake.

Lime to be spread over the effluent application area at the rate of 2500kg/ha or approximately 175kg over the 700m² area, and thereafter every 3 years.

The treated effluent may be applied by surface irrigation. Surface sprays must be of the large droplet type that do not produce aerosols and are to be regularly rotated throughout the effluent application area to evenly spread hydraulic and nutrient loads.

The treated effluent may also be applied by sub-surface irrigation.

Auto flush return to the tank should be installed to ensure flocculants in the lines are recycled back to the tank. Pressure compensating dripper heads to be used. Vacuum breakers or air release valves to be installed at highest point in irrigation field, to prevent migration of soil into irrigation lines. Irrigation laterals to be installed on the contour at 100mm depth and at nominal 100mm spacing. A single disc filter of nominal 100mm diameter (85mm internal) to be installed upstream of irrigation system. Filter to be cleaned at quarterly service intervals.

The irrigation area must not be disturbed by any building activity such as stockpiles of excavated material or vehicle traffic. Livestock to be excluded from the site.

House area and rainwater tank runoff to be directed well clear of the effluent application area.

Detergents should be selected for low levels of phosphorus and sodium. (See appendix 3)

Fig 1. Area suitable for effluent application

Photo point

WATER BALANCE

A water balance model is helpful in assessing the sensitivity of the design to various input and output characteristics.

Site Address:		6 Belleview Drive, Murrumbateman														
Date:	Assessor:															
INPUT DATA																
Design Wastewater Flow	Q	1,440	L/day	Based on	maximum po	tential occu	pancy an	nd derived	from Table	e 4 in the B	PA Code	of Practic	e (2013)			
Design Irrigation Rate	DIR	4.0	mm/dav	Based on	soil texture c	lass/perme	ability and	d derived f	rom Table	9 in the E	PA Code	of Practice	(2013)			
Nominated Land Application Area	L	500	m ²	1												
Crop Factor	c	0.6-0.8	unitless	Estimates	evapotransp	iration as a	fraction of	of nan eva	noration: v	aries with	season a	nd crop ty	ne ²			
Rainfall Runoff Factor	RF	1.0	untiless		of rainfall that								pe			
Mean Monthly Rainfall Data		inton Hostel) (on and numbe		onsite and	a in fille ates	, allowing i	ior any ru						
Mean Monthly Pan Evaporation Data		erra Airport (07			on and numbe											
mour monany i an Evaporation Data	Caric	on a raport (of	0007)	Doin Olali												
Parameter	Symbol	Formula	Units	Jan	Feb	Mar	Apr	Mav	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Days in month	D		days	31	28	31	30	31	30	31	31	30	31	30	31	365
Rainfall	R		mm/month	50.3	45.5	46.7	49	49.9	57.9	59.6	59.3	56.8	64.5	56.6	55.8	651.9
Evaporation	E		mm/month	260.4	207.2	176.7	111	68.2	48	52.7	80.6	114	161.2	198	248	1726
Crop Factor	С		unitless	0.80	0.80	0.70	0.70	0.60	0.60	0.60	0.60	0.70	0.80	0.80	0.80	
OUTPUTS																
Evapotranspiration	ET	ExC	mm/month	208	166	124	78	41	29	32	48	80	129	158	198	1290.73
Percolation	В	DIRxD	mm/month	124.0	112	124.0	120.0	124.0	120.0	124.0	124.0	120.0	124.0	120.0	124.0	1460.0
Outputs		ET+B	mm/month	332.3	277.76	247.7	197.7	164.9	148.8	155.6	172.4	199.8	253.0	278.4	322.4	2750.7
INPUTS																
Retained Rainfall	RR	RxRF	mm/month	50.3	45.5	46.7	49	49.9	57.9	59.6	59.3	56.8	64.5	56.6	55.8	651.9
Applied Effluent	w	(QxD)/L	mm/month	89.3	80.6	89.3	86.4	89.3	86.4	89.3	89.3	86.4	89.3	86.4	89.3	1051.2
Inputs		RR+W	mm/month	139.6	126.1	136.0	135.4	139.2	144.3	148.9	148.6	143.2	153.8	143.0	145.1	1703.1
STORAGE CALCULATION																
Storage remaining from previous month			mm/month	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Storage for the month	S	(RR+W)-(ET+B)	mm/month	-192.7	-151.6	-111.7	-62.3	-25.7	-4.5	-6.7	-23.8	-56.6	-99.2	-135.4	-177.3	
Cumulative Storage	M	, , , , ,	mm	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Maximum Storage for Nominated Area	N		mm	0.00												
	V	NxL	L	0												
LAND AREA REQUIRED FOR	ZERO S	TORAGE	m ²	158	174	222	291	388	475	465	395	302	237	195	167	
MINIMUM AREA REQUIRED F	OR ZEP	O STORAG	E٠	476.0	m ²											

Based on a potential quantity of 1440 litres/day of wastewater, spread across 700 m² of irrigation area, the effluent application rate of 2.1mm/day results in a moisture deficit in all months of the year. Importantly, the deficit is theoretical and it should be noted that saturation is possible at any time following periods of extended wet weather.

The application rate of 2.1mm/day is comparatively conservative, against the rate of 4mm/day for a loam determined from table M1 from AS1547:2012.

NUTRIENT BALANCE

The nutrient balance examines the discharge of nitrogen and phosphorus against the capacity of plants and soil to assimilate those nutrients. Excess nutrients may eventually impact upon watercourses via surface run-off or groundwater.

Nitrogen Balanc	e									
Site Address:	6 Bell	leview D)rive, M	urrum	batema	n				
SUMMARY - LAND APPLICATION AREA REQUIRED BASED NITROGEN BALANCE									701	m²
INPUT DATA ¹										-
Wastewate	er Loading					N	utrient Crop	Uptake		
Hydraulic Load		1440	L/day	Crop N Upt	ake	180	kg/ha/yr	which equals	49.32	mg/m ² /day
Effluent N Concentration		30	mg/L							
% N Lost to Soil Processes (Geary & Gar	dner 1996)	0.2	Decimal							
Total N Loss to Soil		8640	mg/day							
Remaining N Load after soil loss		34560								
NITROGEN BALANCE BASE	D ON AN	INUAL CR	ΟΡ UPTA	KE RATE	S					
Minimum Area required with zero	o buffer		Determinati	on of Buffe	Zone Size fo	r a Nominate	d Land Appli	cation Area (LA	A)	
Nitrogen	701	m²	Nominated LAA Size 500 m ²							
			Predicted N Export from LAA 3.61 kg/year							
			Minimum Buffer Required for excess nutrient 201 m ²							

1440 litres/day wastewater quantity at 30mg/l total N concentration = 15.8 kg Nitrogen discharged per year, applied over an irrigation area of 700 m² = 225 kg/ha/yr.

A mix of existing native and improved grasses should provide a rate of nitrogen uptake of around 180kg/ha/yr at this location.

Total nitrogen loss to soil processes should account for 45kg/ha/yr. Therefore the discharge of nitrogen should be balanced by plant uptake and soil processes.

Phosphorus Loading

1440 litres/day wastewater quantity at 10 mg/l of P

= 5.25kg P discharged per year, applied over an irrigation area of $700m^2$ = 75kg/ha/yr.

Native & improved grasses should provide a rate of P uptake of around 20kg/ha/yr.

Balance of 55kg/ha/yr. applied to P sorption capacity of soil; P sorption capacity of in-situ soil 5070kg/ha.¹

Lifetime of irrigation area 92 years in terms of P sorption capacity.

¹ SCA "Design and Installation of On-site Wastewater Systems", P. Sorption Uptake Values (Typical)

		l.	AL	A		Client:	Site Address:	Date:	
68 49 20		500 - 2300+	200-500	0-200	Depth	4		20	2 2
	745	Sump	CLEAR		Boundary	JACAC	6 BELLEVIEN	20.6.24	
		Medium Ceay	Sauny Cury Lorm	Loan	Texture		DRIVE ,		
		Moomare	Massive	MODERATE	Structure		MUREUMBASEMAN		Soil Sur
		Orner Denver Seluor	Lieur Gencarin Brown	DARK Selounsin Brown	Colour		NAN	1	Soil Survey Sheet
		Res	1	1	Mottles				
		5% io 10mm	20% Folder	1	Coarse Frag				the set
		Moisr Lucau	Mast Loose	Sciguras Moist WRAK	Consistence		Land Capability Services	ICS	
		Very	Scient	Scient	Plasticity	X	⁷ Services	S	

APPENDIX 1: SOIL SURVEY SHEET

APPENDIX 2: NSW HEALTH ACCREDITED AWTS

AWTS Model	Company/Agent	Contact
Ultra Clear, ST8, ST10	Capital Waterworks	02 6258 1378
Taylex ABS 1500	Clearwater Sewage	0419 229 313
Fuji Clean CE1200, CRX1500,	Septics Filters & Pumps	0429 481 106
ECO PRO	The Tank People	02 6254 6949
Alpha Treat DP10	Alpha Treat Pty Ltd	0409 042 689
BioSeptic Performa, S-Ten	Bioseptic	02 4629 6630
Aqua Advanced	Septics Filters & Pumps	0429 481 106
Garden Master Elite Advanced	Garden Master	02 4932 1011
Ozzi Kleen RP10	Suncoast Waste Water	1800 450 767
Super-Treat SE 10, SB 10	Super-Treat Systems	02 4422 3861
Taylex Poly ABS, ABS, DMS	Clearwater Sewage	0419 229 313
Turbojet Single Advanced	Icon-Septech	1300 557 143
Alpha Treat DP10	EcoWater Qld Pty Ltd	07 3205 3666
Earthsafe SS10	Earthsafe Australia Pty Ltd	1800 043 635
UBI Aqua	Global Tanks	07 4697 7099
Kingspan BioFicient	Kingspan Water & Energy	1300 736 562
Rivatec RWT10	Rivatec Environmental	1300 327 847

Appendix 3: Important Reading

Phone Office/Lab (02) 6775 1157 Fax (02) 6775 1043 ABN: 72 212 385 096

email: rob@lanfaxlabs.com.au Website: http://www.lanfaxlabs.com.au 493 Old Inverell Road (P.O. Box W90) Armidale NSW 2350 Director: Dr Robert Patterson FIEAust, CPSS, CPAg Soil Scientists and Environmental Engineers

Performance certified by Aust. Soil & Plant Analysis Council

LAUNDRY PRODUCTS RESEARCH

Laundry products were purchased by *Lanfax Labs* from supermarkets in Armidale, NSW and a number of boutique products were provided by manufacturers. A total of 41 liquids and 54 powders were tested by mixing each product at the manufacturer's recommended dose for either front loading or top loading automatic washing machines. The dose was calculated at the full cycle load, that is 75 L for front loaders and 150 L for top loaders. The full cycle accounts for the water used in the wash, spin, rinse, deep rinse and spin rinse cycle. The quantities of 75 L for front loaders and 150 L for top loaders were taken from averaged rates for those machines (Patterson, 2004).

Each sample was mixed with cold (20°C) deionised water (to replicate good quality rainwater). Where town water supplies are used, the values reported for sodium concentrations may increase because of sodium in the reticulated water – that will vary from location to location, usually higher in inland than coastal towns. Each sample was shaken for 30 minutes to replicate the washing action.

The concentrations of sodium and phosphorus (and other elements) were measured on the samples using Inductively Coupled Plasma (ICP) technology in accordance with current Good Laboratory Practices at *Lanfax Labs*.

Only sodium (g/wash) and phosphorus (mg/L) are reported in the graphs presented here.

Additional information on this unique research may be obtained at: www.lanfaxlabs.com.au/laundry.htm

Other papers on laundry detergents can be found at: www.lanfaxlabs.com.au/publications.html

HOW TO READ THE GRAPHS

Each product is represented by two bars: the top bar (if present) shows the phosphorus concentration (mg/L); while the lower bar shows the sodium load (g/wash). The graph is arranged in ranked order of sodium load. Figure F1 is for 54 detergents at the front loader rate, Figure T1 is for 89 detergents at the top loader rate.

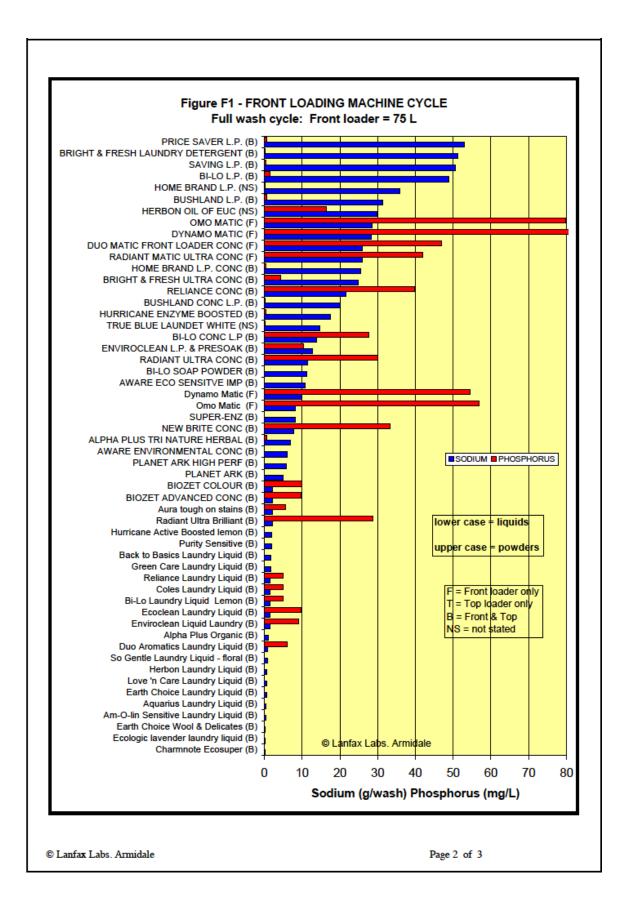
Sodium Load

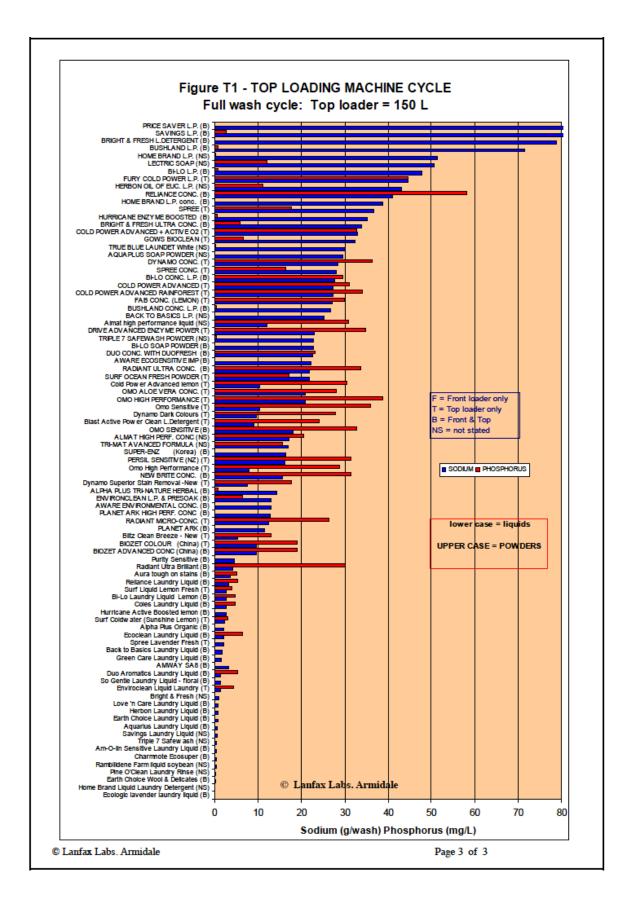
For all on-site systems that apply the effluent by surface or subsurface application, the levels of sodium in the discharge are critical to long term absorption. Choose the product with the lowest sodium load (g/wash). Levels above 20 g/wash are likely to be detrimental to plants and the soil although plant tolerance and soil types will vary. The shorter the bar, the lower the load. When in doubt, choose the lower sodium load.

The detergents with long sodium bars (greater than 20 g/wash) should not be thrown onto your favourite garden as the sodium may be detrimental to the plants. High pH (see the website for pH data) is also detrimental to plants and soil. The pH of liquids (average pH 8) is generally lower than pH of powder detergents (average pH 10.5).

Phosphorus Concentration

The choice of a suitable level of phosphorus in the greywater (laundry water discharge) will depend upon the soil type and the use of the effluent. In some soils, phosphorus is not a real concern because of the natural ability of the soil to immobilize the phosphorus and limit its leaching from the disposal site. In other soils, phosphorus is likely to build up to high levels and leach from the soil. It is preferable to choose the lower phosphorus values as well as the low sodium values. The load of phosphorus for each product is available in the website data.


©Copyright Restriction


This material may only be reproduced in full (three pages) for educational purposes. None of the graphs should be construed as an endorsement of one product over another, or that one product is superior or inferior to another. The data are presented as measurements of fact, ranked in order of sodium.

This research was funded by Lanfax Labs and was independent of any manufacturer or other organisation.

Caution: Formulations may have changes since these products were purchased in 2005.

Soil survey and analytical assessments, landscape analysis and plant nutrient relationships Independent research and commercial analytical laboratories. Environmental management consultants

NOTES